formal/formal.scm

163 lines
3.9 KiB
Scheme
Raw Normal View History

2025-02-20 23:11:31 -05:00
;; okay, i'll keep these procedures for the sake of nesting
2025-02-20 22:26:09 -05:00
(define (make-pand p q) `(and ,p ,q))
(define pand
(case-lambda
[() #t]
[(p) p]
[(p . qs) (fold-left make-pand p qs)]))
(define (make-por p q) `(or ,p ,q))
(define por
(case-lambda
[() #f]
[(p) p]
[(p . qs) (fold-left make-por p qs)]))
;; iirc, or: (not p) or q
(define (make-p-> p q) `(-> ,p ,q))
;; could fold but laziness
(define p->
(case-lambda
[() #t]
[(p) p]
[(p . qs) (make-p-> p (apply p-> qs))]))
(define (p<-> p q) (pand (p-> p q) (p-> q p)))
;; maybe could have some pretty-printing logic? this definition is just 2 good 2 pass up
(define (pnot p) (p-> p #f))
(define ~ pnot)
;; maybe a var is just a sym? no forall lel
;; existence l8r
;; nah
;; valued vars? :o
;; (define-record-type forall
;; (fields vars p)
;; (nongenerative forall))
;; (define-syntax forall
;; (syntax-rules ()
;; [(forall (var* ...) p)
;; (make-forall
;; '(var* ...)
;; (let ([var* 'var*] ...) p))]
;; [(forall var p) (forall (var) p)]))
(define-record-type argument
2025-02-20 23:11:31 -05:00
(fields premises conclusions)
2025-02-20 22:26:09 -05:00
(nongenerative argument))
(define-syntax argument
(syntax-rules ()
2025-02-20 23:11:31 -05:00
[(_ (var* ...) (premise* ...) (conclusion* ...))
2025-02-20 22:26:09 -05:00
(lambda (var* ...)
2025-02-20 23:11:31 -05:00
(make-argument (list premise* ...) (list conclusion* ...)))]))
2025-02-20 22:26:09 -05:00
(define modus-ponens
(argument (p q)
2025-02-20 23:11:31 -05:00
[(p-> p q)
p]
[q]))
2025-02-20 22:26:09 -05:00
(define modus-tollens
(argument (p q)
2025-02-20 23:11:31 -05:00
[(p-> p q)
(~ q)]
[(~ p)]))
;; YES: multiple conclusions (no more simplification-{l,r})
(define simplification
(argument (p q)
[(pand p q)]
[p q]))
(define conjunction
(argument (p q)
[p
q]
[(pand p q)]))
2025-02-20 22:26:09 -05:00
;; (follows (P* ... (-> p q) p Q* ...) q modus-ponens) => #t
;; iterative argument
;; laws of inference are taken as fact
;; norm vars
;; order irrelevant
;; search for reqs?
(define (premises<=? p1 p2)
(and (andmap (lambda (prem) (member prem p2)) p1)
#t))
2025-02-20 23:11:31 -05:00
(define (follows? prems q by)
(and (member q (argument-conclusions by))
(premises<=? (argument-premises by) prems)))
2025-02-20 22:26:09 -05:00
2025-02-20 23:11:31 -05:00
(define-record-type step
(fields conclusion rule)
(nongenerative step))
2025-02-20 22:26:09 -05:00
2025-02-20 23:11:31 -05:00
(define-record-type proof
(fields argument steps)
(nongenerative proof))
2025-02-20 22:26:09 -05:00
2025-02-20 23:11:31 -05:00
(define-syntax proof
(syntax-rules ()
[(_ (var* ...) arg (conclusion* rule*) ...)
(lambda (var* ...)
(make-proof (arg var* ...)
(list (make-step conclusion* rule*) ...)))]))
;; bleh
;; huh, procedure-arity-mask can handle 1000+ no problem
;; returns the lowest arity
(define (procedure-arity proc)
(define mask (procedure-arity-mask proc))
(let loop ([i 0])
(if (logbit? i mask)
i
(loop (add1 i)))))
(define (proof-valid? proof%)
(define (gensyms n xs)
(if (zero? n)
;; less confusing to apply (proof g0 g1 ...)
(reverse xs)
(gensyms (sub1 n) (cons (gensym) xs))))
(define proof (apply proof% (gensyms (procedure-arity proof%) '())))
(define arg (proof-argument proof))
;; reversing here lets us recover a nice order at the end
(define prems (reverse (argument-premises arg)))
(define goals (argument-conclusions arg))
(call/1cc
(lambda (return)
(for-each
(lambda (step)
(let ([concl (step-conclusion step)]
[rule (step-rule step)])
(unless (follows? prems concl rule)
(format #t "fool, ~a does not follow from ~a and ~a!\n"
concl (reverse prems) rule)
(return #f))
(set! prems (cons concl prems))))
(proof-steps proof))
(when (premises<=? goals prems)
(return #t))
(format #t "forgetting something? you're trying to prove ~a, but you've only got ~a\n"
goals prems))))
;; TODO: i can just guess lol
(define and-comm
(proof (p q)
(argument (p q)
[(pand p q)]
[(pand q p)])
[p (simplification p q)]
[q (simplification p q)]
[(pand q p) (conjunction q p)]))
2025-02-20 22:26:09 -05:00