add NatSet to its own file
This commit is contained in:
parent
bf91efe29c
commit
9240c7b899
2 changed files with 147 additions and 124 deletions
125
Invariant.lean
125
Invariant.lean
|
@ -1,124 +1 @@
|
|||
import Mathlib.Data.List.Sort
|
||||
|
||||
abbrev NatSet := { xs : List ℕ // List.Sorted (·<·) xs }
|
||||
|
||||
namespace NatSet
|
||||
|
||||
def empty : NatSet := ⟨[], List.sorted_nil⟩
|
||||
def singleton (x : ℕ) : NatSet := ⟨[x], List.sorted_singleton x⟩
|
||||
|
||||
def remove (x : ℕ) : NatSet → NatSet
|
||||
| ⟨[], _⟩ => empty
|
||||
| ⟨n::ns, h⟩ =>
|
||||
let tail := ⟨ns, List.Sorted.of_cons h⟩
|
||||
if n = x
|
||||
then tail
|
||||
else ⟨n::tail, h⟩
|
||||
|
||||
def list_insert (x : ℕ) : List ℕ → List ℕ
|
||||
| [] => [x]
|
||||
| a::as =>
|
||||
if x = a
|
||||
then a::as
|
||||
else if x < a
|
||||
then x::a::as
|
||||
else a::(list_insert x as)
|
||||
|
||||
theorem list_insert_mem : b ∈ list_insert x xs → b = x ∨ b ∈ xs := by
|
||||
induction xs with simp [list_insert]
|
||||
| cons a as ih =>
|
||||
split
|
||||
next heq =>
|
||||
intro hmem
|
||||
simp_all only [List.mem_cons, or_true]
|
||||
next hne =>
|
||||
split
|
||||
· simp
|
||||
next hnlt =>
|
||||
simp [*]
|
||||
intro h
|
||||
cases h
|
||||
· right; left; assumption
|
||||
cases ih ‹_›
|
||||
· left; assumption
|
||||
· right; right; assumption
|
||||
|
||||
theorem list_insert_sorted (hs : List.Sorted (·<·) xs)
|
||||
: List.Sorted (·<·) (list_insert x xs) := by
|
||||
induction xs with simp [list_insert]
|
||||
| cons a as ih =>
|
||||
split
|
||||
· simp_all only [List.sorted_cons, implies_true, and_self]
|
||||
· split
|
||||
· exact List.Sorted.cons ‹_› hs
|
||||
· have : a < x := by
|
||||
rename_i hne hnlt
|
||||
apply Nat.lt_of_le_of_ne
|
||||
exact Nat.le_of_not_lt hnlt
|
||||
exact fun a_1 => hne (Eq.symm a_1)
|
||||
|
||||
simp only [List.sorted_cons]
|
||||
|
||||
constructor
|
||||
· intro b hmem
|
||||
cases list_insert_mem hmem
|
||||
<;> simp_all only [imp_self, List.sorted_cons, and_true, not_lt]
|
||||
· simp_all only [imp_self, List.sorted_cons, and_true, not_lt]
|
||||
|
||||
def insert (x : ℕ) (s : NatSet) : NatSet :=
|
||||
⟨list_insert x s.val, list_insert_sorted s.prop⟩
|
||||
|
||||
instance : EmptyCollection NatSet where
|
||||
emptyCollection := empty
|
||||
|
||||
instance : Singleton ℕ NatSet where
|
||||
singleton := singleton
|
||||
|
||||
instance : Insert ℕ NatSet where
|
||||
insert := insert
|
||||
|
||||
instance : LawfulSingleton ℕ NatSet where
|
||||
insert_empty_eq := by intro; rfl
|
||||
|
||||
instance : Membership ℕ NatSet where
|
||||
-- this is still an optimization over typical list membership, but
|
||||
-- TODO: binary search
|
||||
mem s n := n ∈ s.val.takeWhile (· ≤ n)
|
||||
|
||||
instance (n : ℕ) (s : NatSet) : Decidable (n ∈ s) :=
|
||||
List.instDecidableMemOfLawfulBEq n (s.val.takeWhile (· ≤ n))
|
||||
|
||||
theorem mem_insert_cons (hmem : x ∈ insert x ⟨ns, h₁⟩)
|
||||
: x ∈ insert x ⟨n::ns, h₂⟩ := by
|
||||
induction ns
|
||||
<;> (
|
||||
simp only [Membership.mem, insert, list_insert]
|
||||
split
|
||||
next heq =>
|
||||
simp [heq]
|
||||
exact List.Mem.head _
|
||||
next hne =>
|
||||
split
|
||||
· simp
|
||||
exact List.Mem.head ..
|
||||
next hnlt =>
|
||||
have hle : n ≤ x := by simp at hnlt; assumption
|
||||
simp only [List.takeWhile, hle, decide_true, le_refl]
|
||||
apply List.Mem.tail n
|
||||
try exact List.Mem.head []
|
||||
try exact hmem
|
||||
)
|
||||
|
||||
theorem mem_insert (x : ℕ) (s : NatSet) : x ∈ s.insert x := by
|
||||
let ⟨xs, h⟩ := s
|
||||
induction xs with
|
||||
| nil =>
|
||||
simp [Membership.mem, insert, list_insert, List.Mem.head]
|
||||
| cons a as ih =>
|
||||
rw [List.sorted_cons] at h
|
||||
have hmem := ih h.right
|
||||
exact mem_insert_cons hmem
|
||||
|
||||
-- TODO: set operation instances
|
||||
|
||||
end NatSet
|
||||
import Invariant.NatSet
|
||||
|
|
146
Invariant/NatSet.lean
Normal file
146
Invariant/NatSet.lean
Normal file
|
@ -0,0 +1,146 @@
|
|||
import Mathlib.Data.List.Sort
|
||||
|
||||
abbrev NatSet := { xs : List ℕ // List.Sorted (·<·) xs }
|
||||
|
||||
namespace NatSet
|
||||
|
||||
def empty : NatSet := ⟨[], List.sorted_nil⟩
|
||||
def singleton (x : ℕ) : NatSet := ⟨[x], List.sorted_singleton x⟩
|
||||
|
||||
def remove (x : ℕ) : NatSet → NatSet
|
||||
| ⟨[], _⟩ => empty
|
||||
| ⟨n::ns, h⟩ =>
|
||||
let tail := ⟨ns, List.Sorted.of_cons h⟩
|
||||
if n = x
|
||||
then tail
|
||||
else ⟨n::tail, h⟩
|
||||
|
||||
def list_insert (x : ℕ) : List ℕ → List ℕ
|
||||
| [] => [x]
|
||||
| a::as =>
|
||||
if x = a
|
||||
then a::as
|
||||
else if x < a
|
||||
then x::a::as
|
||||
else a::(list_insert x as)
|
||||
|
||||
theorem list_insert_mem : b ∈ list_insert x xs → b = x ∨ b ∈ xs := by
|
||||
induction xs with simp [list_insert]
|
||||
| cons a as ih =>
|
||||
split
|
||||
next heq =>
|
||||
intro hmem
|
||||
simp_all only [List.mem_cons, or_true]
|
||||
next hne =>
|
||||
split
|
||||
· simp
|
||||
next hnlt =>
|
||||
simp [*]
|
||||
intro h
|
||||
cases h
|
||||
· right; left; assumption
|
||||
cases ih ‹_›
|
||||
· left; assumption
|
||||
· right; right; assumption
|
||||
|
||||
theorem list_insert_sorted (hs : List.Sorted (·<·) xs)
|
||||
: List.Sorted (·<·) (list_insert x xs) := by
|
||||
induction xs with simp [list_insert]
|
||||
| cons a as ih =>
|
||||
split
|
||||
· simp_all only [List.sorted_cons, implies_true, and_self]
|
||||
· split
|
||||
· exact List.Sorted.cons ‹_› hs
|
||||
· have : a < x := by
|
||||
rename_i hne hnlt
|
||||
apply Nat.lt_of_le_of_ne
|
||||
exact Nat.le_of_not_lt hnlt
|
||||
exact fun a_1 => hne (Eq.symm a_1)
|
||||
|
||||
simp only [List.sorted_cons]
|
||||
|
||||
constructor
|
||||
· intro b hmem
|
||||
cases list_insert_mem hmem
|
||||
<;> simp_all only [imp_self, List.sorted_cons, and_true, not_lt]
|
||||
· simp_all only [imp_self, List.sorted_cons, and_true, not_lt]
|
||||
|
||||
def insert (x : ℕ) (s : NatSet) : NatSet :=
|
||||
⟨list_insert x s.val, list_insert_sorted s.prop⟩
|
||||
|
||||
instance : EmptyCollection NatSet where
|
||||
emptyCollection := empty
|
||||
|
||||
instance : Singleton ℕ NatSet where
|
||||
singleton := singleton
|
||||
|
||||
instance : Insert ℕ NatSet where
|
||||
insert := insert
|
||||
|
||||
instance : LawfulSingleton ℕ NatSet where
|
||||
insert_empty_eq := by intro; rfl
|
||||
|
||||
instance : Membership ℕ NatSet where
|
||||
-- this is still an optimization over typical list membership, but
|
||||
-- TODO: binary search
|
||||
mem s n := n ∈ s.val.takeWhile (· ≤ n)
|
||||
|
||||
instance (n : ℕ) (s : NatSet) : Decidable (n ∈ s) :=
|
||||
List.instDecidableMemOfLawfulBEq n (s.val.takeWhile (· ≤ n))
|
||||
|
||||
theorem mem_insert_cons (hmem : x ∈ insert x ⟨ns, h₁⟩)
|
||||
: x ∈ insert x ⟨n::ns, h₂⟩ := by
|
||||
induction ns
|
||||
<;> (
|
||||
simp only [Membership.mem, insert, list_insert]
|
||||
split
|
||||
next heq =>
|
||||
simp [heq]
|
||||
exact List.Mem.head _
|
||||
next hne =>
|
||||
split
|
||||
· simp
|
||||
exact List.Mem.head ..
|
||||
next hnlt =>
|
||||
have hle : n ≤ x := by simp at hnlt; assumption
|
||||
simp only [List.takeWhile, hle, decide_true, le_refl]
|
||||
apply List.Mem.tail n
|
||||
try exact List.Mem.head []
|
||||
try exact hmem
|
||||
)
|
||||
|
||||
theorem mem_insert (x : ℕ) (s : NatSet) : x ∈ s.insert x := by
|
||||
let ⟨xs, h⟩ := s
|
||||
induction xs with
|
||||
| nil =>
|
||||
simp [Membership.mem, insert, list_insert, List.Mem.head]
|
||||
| cons a as ih =>
|
||||
rw [List.sorted_cons] at h
|
||||
have hmem := ih h.right
|
||||
exact mem_insert_cons hmem
|
||||
|
||||
theorem insert_orderless (a b : ℕ) (s : NatSet)
|
||||
: (s.insert a).insert b = (s.insert b).insert a := by
|
||||
let ⟨xs, h⟩ := s
|
||||
induction xs with
|
||||
| nil =>
|
||||
simp [insert, list_insert]
|
||||
split
|
||||
· simp [*]
|
||||
· have hne : a ≠ b := by
|
||||
intro
|
||||
simp_all only [not_true_eq_false]
|
||||
simp only [↓reduceIte, hne]
|
||||
split
|
||||
· have hnlt : ¬a < b := Nat.not_lt_of_gt ‹_›
|
||||
exact Eq.symm (if_neg hnlt)
|
||||
· have hlt : a < b := Nat.lt_of_le_of_ne (Nat.le_of_not_lt ‹_›) hne
|
||||
exact Eq.symm (if_pos hlt)
|
||||
| cons a as ih =>
|
||||
|
||||
sorry
|
||||
|
||||
example : a ∈ ({a, b, c} : NatSet) := mem_insert a _
|
||||
-- example : a ∈ ({c, b, a} : NatSet) := mem_insert a _
|
||||
|
||||
-- TODO: set operation instances
|
Loading…
Reference in a new issue