diff --git a/SimpleCounterexamples/FinitudeOfPropositions.lean b/SimpleCounterexamples/FinitudeOfPropositions.lean index 12b8eb9..ed5cb91 100644 --- a/SimpleCounterexamples/FinitudeOfPropositions.lean +++ b/SimpleCounterexamples/FinitudeOfPropositions.lean @@ -1,13 +1,13 @@ -- I actually thought that ∀p, ∃q, (q ≠ p) ∧ q! -- However, propositional extensionality tells us that (p ↔ q) → p = q -theorem finiteTrueProps +theorem finite_true_props : ¬∀p, ∃q, (q ≠ p) ∧ q := by intro h have := h True simp at this -theorem finiteFalseProps +theorem finite_false_props : ¬∀p, ∃q, (q ≠ p) ∧ ¬q := by intro h have := h False diff --git a/SimpleCounterexamples/RunMEvil.lean b/SimpleCounterexamples/RunMEvil.lean index 69735cd..5dd38c9 100644 --- a/SimpleCounterexamples/RunMEvil.lean +++ b/SimpleCounterexamples/RunMEvil.lean @@ -1,8 +1,8 @@ -theorem runMEvil +theorem runM_evil (runM : {α : Type} → {m : Type → Type} → [Monad m] → m α → α) : False := runM (none : Option Empty) |>.elim -theorem lawfulRunMEvil +theorem lawfulRunM_evil (runM : {α : Type} → {m : Type → Type} → [Monad m] → [LawfulMonad m] → m α → α) : False := runM (none : Option Empty) |>.elim