abbrev HasInfinity (α : Type) [LT α] := ∃(inf : α), ∀n, n < inf theorem lt_irrefl_imp_no_infinity (α : Type) [LT α] (irrefl : ∀(n : α), ¬n < n) : ¬HasInfinity α := by intro h have ⟨inf, h⟩ := h have hlt : inf < inf := h inf exact irrefl inf hlt theorem no_nat_infinity : ¬HasInfinity Nat := lt_irrefl_imp_no_infinity Nat Nat.lt_irrefl theorem no_int_infinity : ¬HasInfinity Int := lt_irrefl_imp_no_infinity Int Int.lt_irrefl -- it's… not difficult to see the pattern