sized-array/SizedArray.lean

528 lines
15 KiB
Text
Raw Normal View History

2023-02-11 01:21:43 -05:00
def SizedArray (α : Type u) (n : Nat) :=
{as : List α // as.length = n}
namespace SizedArray
def inner {n : Nat} : SizedArray α n → List α :=
λxs => xs.val
def empty : SizedArray α 0 := ⟨[], rfl⟩
def singleton (a : α) : SizedArray α 1 := ⟨[a], rfl⟩
def cons {n : Nat} : α → SizedArray α n → SizedArray α (n.succ) :=
λx xs =>
let ⟨xs, h⟩ := xs
⟨x :: xs, by rw [List.length_cons, h]⟩
def replicate (n : Nat) (x : α) : SizedArray α n :=
match n with
| Nat.zero => empty
| Nat.succ n => cons x (replicate n x)
def append {a b : Nat} (as : SizedArray α a) (bs : SizedArray α b)
: SizedArray α (a + b) := by
let ⟨as, heqa⟩ := as
let ⟨bs, heqb⟩ := bs
let combined := as ++ bs
let (len_proof : combined.length = a + b) := by
rw [List.length_append]
rw [heqa, heqb]
exact ⟨combined, len_proof⟩
def from_list (xs : List α) : SizedArray α (xs.length) :=
match xs with
| List.nil => empty
| List.cons x xs => cons x (from_list xs)
@[simp]
def tail_neq_implies_neq
(a b : α) (as bs : List α) (h : as ≠ bs)
: a :: as ≠ b :: bs := by
induction as with
| nil =>
induction bs with
| nil => simp at h
| cons b bs => simp
| cons a' as' =>
simp [*]
@[simp]
def length_neq_implies_neq :
∀{as bs : List α}, as.length ≠ bs.length → as ≠ bs
| [], [], h => absurd h (by simp)
| [], (_::_), _ => by simp
| (_::_), [], _ => by simp
| (x::xs), (y::ys), h =>
let (h₂ : xs.length ≠ ys.length) := by
cases xs with
| nil =>
rw [List.length] at h
simp at h
rw [List.length_nil]
exact h
| cons x xs =>
rw [List.length, List.length, List.length] at h
simp at h
exact h
let h₃ := @length_neq_implies_neq α xs ys h₂
tail_neq_implies_neq x y xs ys h₃
-- def length_g0_imp_nonempty (xs : List α) ⦃h : xs.length > 0⦄
-- : List α ≠ List.nil := sorry
-- def is_not_empty {n : Nat} {h : n > 0}
-- : inner (SizedArray α n) ≠ [] := sorry
def gt_flip {a b : Nat} (h : a > b) : (b < a) := by simp [*]
def lt_flip {a b : Nat} (h : a < b) : (b > a) := by simp [*]
def ge_flip {a b : Nat} (h : a ≥ b) : (b ≤ a) := by simp [*]
def le_flip {a b : Nat} (h : a ≤ b) : (b ≥ a) := by simp [*]
def gt_comm {a b : Nat} : a > b ↔ b < a := by simp [*]
def lt_comm {a b : Nat} : a < b ↔ b > a := by simp [*]
def ge_comm {a b : Nat} : a ≥ b ↔ b ≤ a := by simp [*]
def le_comm {a b : Nat} : a ≤ b ↔ b ≥ a := by simp [*]
def gt_implies_neq {a b : Nat} (h : a > b) : a ≠ b := by
have hlt := gt_flip h
have neq := Nat.ne_of_lt hlt
exact Ne.symm neq
def lt_implies_neq {a b : Nat} (h : a < b) : a ≠ b := by
have hgt := lt_flip h
have (neq : b ≠ a) := gt_implies_neq hgt
exact Ne.symm neq
def length_gt_zero_implies_nonempty {xs : List α} (h : xs.length > 0)
: xs ≠ [] :=
let (hnz : List.length xs ≠ 0) := gt_implies_neq h
let (hne_len : xs.length ≠ [].length) := by
rw [List.length_nil]
exact hnz
length_neq_implies_neq hne_len
def length_eq_zero_implies_empty {xs : List α} (_ : xs.length = 0)
: xs = [] :=
match xs with
| List.nil => rfl
def empty_implies_length_eq_zero {xs : List α} (h : xs = [])
: xs.length = 0 := by
rw [h]
rfl
def length_zero_iff_empty {xs : List α}
: xs.length = 0 ↔ xs = [] :=
length_eq_zero_implies_empty,
empty_implies_length_eq_zero
def not_empty_implies_length_neq_zero {xs : List α} (h : xs ≠ [])
: xs.length ≠ 0 :=
match xs with
| List.nil => by
have (nh : [] = []) := Eq.refl ([] : List α)
exact absurd nh h
| List.cons head tail => by
rw [List.length_cons]
exact Nat.succ_ne_zero (List.length tail)
def length_gt_zero_iff_nonempty {xs : List α}
: xs.length > 0 ↔ xs ≠ [] :=
length_gt_zero_implies_nonempty,
by
intro h
have hnz := not_empty_implies_length_neq_zero h
exact Nat.zero_lt_of_ne_zero hnz
@[simp]
def length_succ_implies_nonempty
{n : Nat} {xs : List α} (h : xs.length = n.succ)
: xs ≠ [] := by
apply length_gt_zero_implies_nonempty
have (hsnnz : n.succ ≠ 0) := Nat.succ_ne_zero n
have (hsngz : n.succ > 0) := Nat.zero_lt_of_ne_zero hsnnz
have (h : xs.length > 0) := Eq.substr h hsngz
exact lt_flip h
def head {n : Nat} (h : n > 0) : SizedArray α n → α :=
λxs =>
let ⟨xs, h₂⟩ := xs
let (hgz : List.length xs > 0) := Eq.substr h₂ h
let hne := length_gt_zero_implies_nonempty hgz
List.head xs hne
def succ_inj {a b : Nat} (h : a.succ = b.succ) : a = b := by
induction a with
| zero =>
induction b with
| zero => rfl
| succ n =>
simp at h
simp
rw [Nat.add_succ] at h
simp at h
| succ n _ =>
simp at h
rw [Nat.succ_eq_add_one]
exact h
-- def gt_and_lt_implies_false {a b : Nat} (hgt : a > b) (hlt : a < b)
-- : False := sorry
def succ_inj_gt {a b : Nat} (h : a > b) : a.succ > b.succ := by
have (h₂ : b < a) := gt_flip h
have (h₃ : Nat.succ b < Nat.succ a) := Nat.succ_lt_succ h₂
exact gt_flip h₃
def tail_length_lt_source_length (x : α) (xs : List α) : ((x :: xs).length > xs.length) := by
rw [List.length_cons]
induction (List.length xs) with
| zero => simp
| succ n ih =>
apply succ_inj_gt
exact ih
@[simp]
def gt_self_implies_false {n : Nat} (h : n > n) : False :=
let neq := gt_implies_neq h
let eq := Eq.refl n
absurd eq neq
def tail_list {n : Nat} (h : n > 0) (xs : SizedArray α n)
: List α := by
let ⟨xs, heqn⟩ := xs
let (hgz : List.length xs > 0) := Eq.substr heqn h
let (hne : xs ≠ []) := length_gt_zero_implies_nonempty hgz
match xs with
| List.nil => exact (by simp at hne)
| List.cons _ xs => exact xs
def safe_tail (xs : List α) (h : xs.length > 0) : List α :=
match xs with
| List.nil => by
rw [List.length_nil] at h
exact (gt_self_implies_false h).elim
| List.cons _ xs => xs
def safe_tail_len (xs : List α) (h : xs.length > 0)
: (safe_tail xs h).length = xs.length.pred := by
induction xs with
| nil => simp at h
| cons a as _ =>
rw [safe_tail]
simp
def tail {n : Nat} (h : n > 0) (xs : SizedArray α n)
: SizedArray α n.pred := by
let ⟨xs, heqn⟩ := xs
let (hgz : List.length xs > 0) := Eq.substr heqn h
let tail := safe_tail xs hgz
let (tail_len : (safe_tail xs hgz).length = (List.length xs).pred)
:= safe_tail_len xs hgz
rw [heqn] at tail_len
exact ⟨tail, tail_len⟩
def uncons (h : n > 0) (xs : SizedArray α n)
: α × (SizedArray α n.pred) :=
⟨head h xs, tail h xs⟩
def map {n : Nat} (f : α → β) (xs : SizedArray α n) : SizedArray β n :=
match n with
| Nat.zero => empty
| Nat.succ n =>
let (hnz : n.succ > 0) := lt_flip (Nat.zero_lt_succ n)
let ⟨head, tail⟩ := uncons hnz xs
cons (f head) (map f tail)
def reverse {n : Nat} (xs : SizedArray α n) : SizedArray α n := by
let ⟨xs, heqn⟩ := xs
let reversed := xs.reverse
let h := List.length_reverse xs
rw [heqn] at h
exact ⟨reversed, h⟩
-- match n with
-- | Nat.zero => empty
-- | Nat.succ n => by
-- let ⟨xs, heqn⟩ := xs
-- let (hne : xs ≠ []) := length_succ_implies_nonempty heqn
-- let (hnz : xs.length ≠ 0) := not_empty_implies_length_neq_zero hne
-- let (hgz : xs.length > 0) := Nat.zero_lt_of_ne_zero hnz
-- let ⟨head, tail⟩ := uncons hgz ⟨xs, rfl⟩
-- let reversed := append (reverse tail) (singleton head)
-- rw [heqn, Nat.pred_succ, ← Nat.succ_eq_add_one] at reversed
-- exact reversed
def matchable {n : Nat} (xs : SizedArray α n)
: Option (α × (SizedArray α n.pred)) :=
match n with
| Nat.zero => none
| Nat.succ x => by
let (hgz : x.succ > 0) := by
have (h : 0 < x.succ) := Nat.zero_lt_succ x
exact lt_flip h
let (h : α × (SizedArray α x)) := by
have h₂ := uncons hgz xs
simp at h₂
exact h₂
rw [Nat.pred_succ]
exact some h
inductive Either (α β : Type u) where
| left : α → Either α β
| right : β → Either α β
def matchable' {n : Nat} (xs : SizedArray α n)
: Either (SizedArray α 0) (α × (SizedArray α n.pred)) := by
match n with
| Nat.zero => exact Either.left empty
| Nat.succ x =>
apply Either.right
rw [Nat.pred_succ]
let (hgz : x.succ > 0) := by
have h₂ := Nat.zero_lt_succ x
exact lt_flip h₂
exact uncons hgz xs
-- def matchable_with_proofs {n : Nat} (xs : SizedArray α n)
-- : Either ((SizedArray α 0) × n = 0) ((α × (SizedArray α n.pred)) × n > 0) := by
-- match n with
-- | zero => sorry
-- this is actually not true!
-- 1.pred = 0 ∧ 0.pred = 0 so this would prove 1 = 0 which is FALSE!
-- sure is inconvenient though
-- def pred_eq {a b : Nat} (h : a.pred = b.pred) : a = b := by
-- induction a with
-- | zero =>
-- rw [Nat.pred_zero] at h
-- induction b with
-- | zero => rfl
-- | succ n ih =>
-- rw [Nat.pred_succ] at h
--
-- | succ n ih => sorry
def pred_sub_assoc {a b : Nat}
: (Nat.pred a) - b = Nat.pred (a - b) := by
induction a with
| zero => rw [Nat.pred_zero, Nat.zero_sub, Nat.pred_zero ]
| succ n _ =>
rw [← Nat.sub_succ, Nat.pred_succ]
rw [Nat.succ_sub_succ]
def drop {from_len : Nat} (n : Nat) (xs : SizedArray α from_len)
: SizedArray α (from_len - n) := by
let ⟨inner, heqn⟩ := xs
match inner with
| List.nil =>
rw [List.length_nil] at heqn
rw [← heqn]
rw [Nat.zero_sub]
exact empty
| List.cons x xs' =>
rw [List.length_cons] at heqn
match n with
| Nat.zero =>
rw [Nat.sub_zero]
exact xs
| Nat.succ n =>
let (hgz : from_len > 0) := by
let hnz := Nat.succ_ne_zero (List.length xs')
rw [← heqn]
exact Nat.zero_lt_of_ne_zero hnz
rw [Nat.sub_succ]
rw [← pred_sub_assoc]
exact drop n (tail hgz xs)
example : SizedArray Nat 2 := drop 3 (from_list [1, 2, 3, 4, 5])
example : SizedArray Nat 0 := drop 100 (from_list [1, 2, 3, 4, 5])
#check drop 1 (drop 2 (from_list [1,2,3,4,5,6]))
def drop_end {from_len : Nat} (n : Nat) (xs : SizedArray α from_len)
: SizedArray α (from_len - n) :=
let reversed := reverse xs
let dropped := drop n reversed
reverse dropped
#eval drop_end 1 (drop 2 (from_list [1,2,3,4,5,6]))
-- def min_comm {a b : Nat} : min a b = min b a := by
-- rw [Nat.min_def, Nat.min_def]
-- sorry
def succ_le_succ_iff_le {a b : Nat} : a.succ ≤ b.succ ↔ a ≤ b :=
Nat.le_of_succ_le_succ,
Nat.succ_le_succ
#check ite_congr
def map_ite (f : β → γ) {c : Prop} [Decidable c] {a b : β}
: f (if c then a else b) = (if c then (f a) else (f b)) := by
cases h : decide c with
| false =>
let (hcf : c = False) := eq_false_of_decide h
simp only [hcf]
rw [ite_false, ite_false]
| true =>
let (hcf : c = True) := eq_true_of_decide h
simp only [hcf]
rw [ite_true, ite_true]
def succ_min {a b : Nat} : (min a b).succ = min a.succ b.succ := by
rw [Nat.min_def]
rw [Nat.min_def]
let (h₁ : (a ≤ b) = (a.succ ≤ b.succ)) := by rw [succ_le_succ_iff_le]
rw [map_ite Nat.succ]
simp only [h₁]
def zip {α β : Type u} {a b : Nat} (as : SizedArray α a) (bs : SizedArray β b)
: SizedArray (α × β) (min a b) :=
match a, b with
| 0, _ => by
rw [Nat.min_def]
simp
exact empty
| x', 0 => by
rw [Nat.min_def]
simp
match x' with
| 0 => simp; exact empty
| Nat.succ x => simp; exact empty
| Nat.succ a, Nat.succ b => by
let ⟨as_inner, haeqn⟩ := as
let ⟨bs_inner, hbeqn⟩ := bs
let hane := length_succ_implies_nonempty haeqn
let hagz :=
not_empty_implies_length_neq_zero hane
|> Nat.zero_lt_of_ne_zero
|> lt_flip
let hbne := length_succ_implies_nonempty hbeqn
let hbgz :=
not_empty_implies_length_neq_zero hbne
|> Nat.zero_lt_of_ne_zero
|> lt_flip
let hngz := lt_flip <| Eq.subst haeqn hagz
let ⟨a_head, a_tail⟩ := uncons hngz as
let hngz := lt_flip <| Eq.subst hbeqn hbgz
let ⟨b_head, b_tail⟩ := uncons hngz bs
let bleh := cons (a_head, b_head) (zip a_tail b_tail)
rw [Nat.pred_succ, Nat.pred_succ] at bleh
rw [succ_min] at bleh
exact bleh
def take {from_len : Nat} (n : Nat) (xs : SizedArray α from_len)
: SizedArray α (min n from_len) :=
let dummy := replicate n ()
let zipped := zip dummy xs
map Prod.snd zipped
-- let reversed := reverse xs
-- let dropped := drop (from_len - n) reversed
-- let unreversed := reverse dropped
-- cases n with
-- | zero =>
-- rw [Nat.sub_zero, Nat.sub_self] at unreversed
-- rw [Nat.min_def]
-- simp
-- exact empty
-- | succ x =>
-- let n := x.succ
-- let (result : SizedArray α (min n from_len)) := sorry
-- exact result
-- sep sep sep sep
-- cases from_len with
-- | zero =>
-- rw [Nat.min_def]
-- simp
-- exact empty
-- | succ y =>
-- c
-- sorry
-- match n with
-- | Nat.zero =>
-- rw [Nat.min]
-- simp
-- exact empty
-- | Nat.succ x =>
-- match from_len with
-- | Nat.zero =>
-- rw [Nat.min]
-- simp
-- exact empty
-- | Nat.succ x' =>
-- let ⟨inner, heqsn⟩ := xs
-- let (hne : inner ≠ []) := length_succ_implies_nonempty heqsn
-- let (hnz : inner.length ≠ 0) := not_empty_implies_length_neq_zero hne
-- let (hgz : inner.length > 0) := Nat.zero_lt_of_ne_zero hnz
-- -- let ⟨head, tail⟩ := uncons hgz ⟨inner, rfl⟩
-- -- have taken := cons head (take x tail)
-- -- simp at taken
-- -- let tail := take x' (tail hgz ⟨inner, rfl⟩)
-- -- simp [*] at tail
-- sorry
-- example : SizedArray Nat 3 := take 3 (by simp) (from_list [1,2,3,4,5])
#eval from_list [1,2,3,4,5,6,7,8,9,10] |> take 7 |> drop 2 |> reverse |> map (· * 2) |> (tail (by simp) ·)
2023-02-13 21:09:32 -05:00
def left_pad' (to : Nat) {n : Nat} (with' : α) (xs : SizedArray α n)
(h : n ≤ to)
: SizedArray α to := by
let pad_amt := to - n
let (h₂ : pad_amt = to - n) := rfl
let padding := replicate pad_amt with'
let padded := append padding xs
rw [h₂] at padded
rw [Nat.sub_add_cancel] at padded
exact padded
exact h
def left_pad (to : Nat) {n : Nat} (with' : α) (xs : SizedArray α n)
: SizedArray α (max to n) := by
cases hle : (decide (to ≤ n)) with
| true =>
rw [max, Nat.instMaxNat, maxOfLe]
simp
let hle : to ≤ n := of_decide_eq_true hle
simp [hle]
exact xs
| false =>
let hle : ¬to ≤ n := of_decide_eq_false hle
let hnle := hle
rw [Nat.not_le_eq, ← Nat.succ_eq_add_one] at hnle
let hnle := Nat.le_of_succ_le hnle
rw [max, Nat.instMaxNat, maxOfLe]
simp
simp [hle]
exact left_pad' to with' xs hnle