all: use standard theorem identifier scheme
https://leanprover-community.github.io/contribute/naming.html
This commit is contained in:
parent
3f9948eaf9
commit
d914baf772
2 changed files with 4 additions and 4 deletions
|
|
@ -1,13 +1,13 @@
|
|||
-- I actually thought that ∀p, ∃q, (q ≠ p) ∧ q!
|
||||
-- However, propositional extensionality tells us that (p ↔ q) → p = q
|
||||
|
||||
theorem finiteTrueProps
|
||||
theorem finite_true_props
|
||||
: ¬∀p, ∃q, (q ≠ p) ∧ q := by
|
||||
intro h
|
||||
have := h True
|
||||
simp at this
|
||||
|
||||
theorem finiteFalseProps
|
||||
theorem finite_false_props
|
||||
: ¬∀p, ∃q, (q ≠ p) ∧ ¬q := by
|
||||
intro h
|
||||
have := h False
|
||||
|
|
|
|||
|
|
@ -1,8 +1,8 @@
|
|||
theorem runMEvil
|
||||
theorem runM_evil
|
||||
(runM : {α : Type} → {m : Type → Type} → [Monad m] → m α → α) : False :=
|
||||
runM (none : Option Empty) |>.elim
|
||||
|
||||
theorem lawfulRunMEvil
|
||||
theorem lawfulRunM_evil
|
||||
(runM : {α : Type} → {m : Type → Type} → [Monad m] → [LawfulMonad m] → m α → α)
|
||||
: False :=
|
||||
runM (none : Option Empty) |>.elim
|
||||
|
|
|
|||
Loading…
Reference in a new issue