simple-counterexamples/SimpleCounterexamples/FinitudeOfPropositions.lean

15 lines
357 B
Text

-- I actually thought that ∀p, ∃q, (q ≠ p) ∧ q!
-- However, propositional extensionality tells us that (p ↔ q) → p = q
theorem finite_true_props
: ¬∀p, ∃q, (q ≠ p) ∧ q := by
intro h
have := h True
simp at this
theorem finite_false_props
: ¬∀p, ∃q, (q ≠ p) ∧ ¬q := by
intro h
have := h False
simp at this